Status and Plans of CMOS Sensor R&D M. Winter on behalf of the IReS-LEPSI (and coll.) R&D teams #### **►** Introductory remarks: - important fabrication parameters - summary of prototypes fabricated since 1999 ## **▶** Results and potential of the sensors: - spatial resolution - material budget - read-out speed - radiation tolerance #### **▶** Plans for 2003 - sensor and its r.o. architecture - integration in vertex detector # **Fabrication parameters** ## **▶** Principle of Operation: ## **▶** Requirements: - \diamond thickness of epitaxial layer should be > 5 μm - \diamond nb of metal layers should be > 3 - \diamond fabrication feature size should be \lesssim 0.35 μm - fabrication process should be analog - ⇒ Exploration of fabrication process is still an important task # **Summary of prototypes fabricated** ► 6 MIMOSA prototypes fabricated since 1999 | chip | year | process | epi. | pitch | metal | peculiar | |------|------|---|---------------|--------------|-------|--| | M1 | 1999 | $egin{array}{c} \mathbf{AMS} \\ 0.6 \mu m \end{array}$ | 14 μm | 20 μm | 3M | thick
epitaxy | | M2 | 2000 | $\begin{array}{c} \textbf{MIETEC} \\ \textbf{0.35} \mu m \end{array}$ | 4.2 μm | 20 μm | 5M | thin
epitaxy | | M3 | 2001 | IBM 0.25 μm | $2\mu m$ | 8 µm | 3M | $\begin{array}{c} \textbf{deep} \\ \textbf{sub-}\mu m \end{array}$ | | M4 | 2001 | $\mathbf{AMS} \\ 0.35 \mu m$ | 0! | 20 μm | 3M | low dop.
substrate | | M5 | 2001 | $egin{array}{c} \mathbf{AMS} \\ 0.6 \mu m \end{array}$ | 14 μm | 17 μm | 3M | real
scale | | M6 | 2002 | ΜΙΕΤΕ C 0.35 μm | 4.2 μm | 28 μm | 5M | col. // r.o.
int. spars. | - ▶ MIMOSA-1, -2, -3, -4, -5 tested (in particular with 120 GeV/c π^- at CERN-SPS) - **► MIMOSA-6: tests starting now** # **Spatial resolution** - $ightharpoonup \sigma_{sp} \sim$ 1.5 (2.2) μm with 14 (4) μm epitaxial layer \hookrightarrow is \lesssim 2 μm necessary ? (will be investigated in 2003) - ▶ single point resolution as a function of ADC-bit encoding: $\sigma_{sp}\sim$ 2-2.5 μm for 3 bits (\sim 3-4 μm for 1 bit ...) **double track resolution: excellent down to 30** μm distance # **Material budget** #### **▶** chip thickness: - \diamond 120 μm works already with MIMOSA-5 (3.5 cm 2 chip) - \diamond 80 μm under way with MIMOSA-5 - $\diamond \lesssim$ 50 μm under devt (results expected in March 2003) ## **stitching:** - \diamond industry standard: $\lesssim 1 \ \mu m$ band between chips - production yield of chips is crucial to make ladders ## **▶** mechanical support: - depends on stitching possibility - alternative designs under study (with their csq on physics) #### **▶** cooling: - ont needed in principle - ⋄ but may help reducing S/N - $(\Rightarrow$ more integrated functionalities, better $\sigma_{sp,2tr})$ - \diamond data treatment inside pixel may produce P_{diss} of up to a few 100 $\mu W/{\rm pixel}$ during pixel read-out (only !) - \Rightarrow using at least part (1/10 ?) of collider duty cycle is crucial - \hookrightarrow switch on/off tests of MIMOSA-5 & estimates of max. $\overline{P_{diss}}$ without heavy cooling planned in 2003 # Read-out speed - ightharpoonup single pixel $\mathbf{f}_{r.o.} \gtrsim 50$ MHz achievable - \Rightarrow 2 cm long columns of 10 3 pixels can be read-out in \lesssim 20 μs **BUT** signal treatment inside pixel requires several clock cycles - $\Rightarrow \lesssim$ 50 μs ladder r.o. time needs to be demonstrated \hookrightarrow non trivial data flux reduction problem (as for any of the technologies considered) - ▶ on the other hand, full signal treatment at chip periphery may not be the optimal solution because it suffers from the dispersion of pixel characteristics - ► natural choice to ensure high frame r.o. speed: group pixels in (short) columns perpendicular to beam dir. BUT: \diamond passive surface hosting col. r.o. μ circuits inside \mathbf{V}_{fid} - \diamond (presumably) substantial \mathbf{P}_{diss} inside \mathbf{V}_{fid} - \Rightarrow question/optimum will be investigated in 2003 ## **Radiation tolerance** ► Neutrons (irradiation of up to $10^{13} n_{eq}/cm^2$): - \diamond modest increase of leakage current / noise observed (\lesssim 10 %) \Rightarrow fluences of \lesssim 10 12 n_{eq}/cm² acceptable - **▶** Ionising radiation: - ♦ few 100 kRad acceptable - \diamond better if T $<< 0^{\circ}$ C (?) - ► Ccl: radiation tolerance at a FLC should not be an issue ## Plans for 2003 ► test MIMOSA-6: column // read-out with data treatment micro-circuits integrated inside pixels and on chip periphery (see next transp. \rightarrow) - **▶** design successor of MIMOSA-6 (larger surface ?) - **▶** continue exploring fabrication processes: - \diamond 0.25 μm TSMC (8 μm epitaxial layer) - \diamond 0.35 μm AMS (8 μm epitaxial layer) - ► continue investigating potential of MIMOSA-4 fab. process (0.35 μm AMS: no epitaxial layer but low doping substrate) - ▶ achieve \lesssim 50 μm thinning on real scale chip (MIMOSA-5) - **▶** work on tolerance to ionising radiation (not really for FLC) **--- 00000 ---** - design first DAS circuits - study various versions of mechanical support (with/without stitching) and evaluate the influence of their mat. budget on the measurement performances of physics processes (e.g. $t\bar{t}H$) - ullet evaluate average P_{diss} : detector simulations, switch off/on tests with MIMOSA-5 - continue studies based on physics processes aiming for the best compromise between granularity, r.o. speed and mat. budget # MIMOSA-6 global layout ▶ 1st sensor with sparsification integrated / substrate: - > amplification (x5.5) and noise suppression (CDS) on pixel - discriminator integrated on chip periphery (1 per column) - \clubsuit 0.35 μm MIETEC technology (same process as MIMOSA-2) - \clubsuit 30 columns read-out in $\downarrow \downarrow$: - > 128 pixels per column - > 30 MHz r.o. frequency - > 6 clock cycles per pixel - \Rightarrow 5 MHz effective r.o. frequency - < $P_{diss} \sim 500 \ \mu W$ per column and frame r.o. cycle - ♣ IReS-LEPSI / DAPNIA collab. - ♣ back from foundry: tests starting in Strasbourg and Saclay⇒ first results in February-March 2003 # MIMOSA-6 pixel layout Correlated double sampling integrated on 28 x 28 μm^2 pixels (designed by IReS - LEPSI) - charge stored in transistor connected to n-well is amplified - 12 amplified charge is stored in 1st capacitor - w amplified charge stored in 2nd capacitor (previous event) is subtracted from charge in 1st capacitor - result is sent to end of column for discrimination - charge is read again, amplified and stored in 2nd capacitor